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Shape of the nematic–isotropic interface in conditions of
partial wetting†

A. PONIEWIERSKI

Institute of Physical Chemistry and College of Science,
Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

(Received 10 November 1999; in � nal form 14 April 2000; accepted 9 May 2000 )

A nematic liquid crystal in contact with a solid substrate is studied in the partial wetting
regime. Both a mesoscopic Landau–de Gennes theory and a macroscopic eŒective interface
Hamiltonian approach are considered. A generalized Young equation for the balance of forces
at the three-phase contact line is derived, which takes into account corrections due to
distortions of the nematic director � eld. It is also shown that the asymptotic form of the
separation of the nematic–isotropic interface from the substrate has a logarithmic correction
to the usual linear behaviour. The characteristic length scale of this correction is given by the
ratio K/(2sNI), where K and sNI are the average elastic constant and the nematic–isotropic
surface tension, respectively, and is of the order of a few hundred angstroms. Then, a simple
form of an eŒective interface Hamiltonian is proposed, and results consistent with the
predictions of the Landau–de Gennes theory are obtained. It is shown, in the framework of
this macroscopic approach, that the line tension associated with the contact line remains
� nite, when the thermodynamic limit is taken, if the anchoring at both the nematic–substrate
and the nematic–isotropic interfaces is homeotropic. However, in the case of diŒerent
anchoring directions, the line tension diverges logarithmically with the system size.

1. Introduction phase. On the experimental side, Alkhairalla et al. [10]

Liquid crystals can be oriented by surfaces, and studied anchoring and orientational wetting of a nematic
this well known phenomenon is called anchoring [1]. substance at the interface with a series of self-assembled
Although anchoring is a surface phenomenon, in the monolayers using an evanescent wave ellipsometric
absence of bulk external � elds it is responsible for technique.
the orientation of liquid crystal molecules far from the Compared with simple � uids, wetting in nematic liquid
surface. A comprehensive review of anchoring in liquid crystals is more complex due to possible competition
crystals can be found in [2]. Wetting is another well between diŒerent anchoring favoured by the nematic–
known surface phenomenon [3–6]. It can be observed substrate and the nematic–isotropic interfaces. This may
in very diŒerent systems such as simple and complex lead to a transition between two nematic wetting phases,
� uids, mixtures, and solids. In contrast, orientational one of which is uniform and the other has a distorted
anchoring is speci� c to liquid crystals. Recently there has direction con� guration [11]. In the case of partial
been growing interest in the relation between anchoring wetting, the nematic–isotropic interface is tilted with
and wetting in liquid crystal systems [7–10]. For respect to the substrate, and the director � eld is usually
instance, Vandenbrouck et al. [8] observed a divergence distorted, even if both interfaces favour the same type
of the extrapolation length, which is related to the of anchoring.
anchoring strength, in 5CB drops on silicon wafers close The excess free energy of the inhomogeneous region
to the nematic–isotropic transition. Rodriguez-Ponce et al. in the neighbourhood of the three-phase contact line
[9] showed that an anchoring transition between states is known as the line tension [12]. The line tension
with planar and homeotropic director con� gurations in simple � uid systems has been studied by several
may play the role of a prewetting transition in the regime authors (see for instance [13] and references therein).
of complete wetting of the substrate by the nematic An interesting question arises concerning the existence

of the line tension in the thermodynamic limit, and

about its behaviour when the transition from partial to*Author for correspondence; e-mail: apon@ichf.edu.pl
complete wetting is approached. In early work, these†Dedicated to Professor Jan Stecki on the occasion of his

retirement. problems were studied mainly by means of a mesoscopic
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1370 A. Poniewierski

theory, which assumes that the free energy is a functional However, the presence of distortions in the nematic
director � eld in� uences the condition for the local tiltof some order parameter � eld de� ned at each point of
angle as well as the shape of the nematic–isotropicthe system, that is, both in the interfacial regions and
interface.in the bulk [14, 15]. Later, Indekeu [16, 13] developed

In very recent work, Rey [22, 23] has derived thea macroscopic approach, the so-called interface displace-
Neumann and Young equations for nematic contactment model, which is equivalent to de Gennes’ approach
lines. The � rst equation corresponds to a three � uid-[3]. In contrast to earlier work, the only quantity of
phase coexistence, when one of the phases is nematic,interest in this model is the separation, l, of a two � uid-
whereas the second corresponds to nematic–isotropicphase interface from a solid substrate, as a function of
coexistence in the presence of a solid substrate. Thethe distance from the three-phase contact line. The excess
force balance equations are expressed in terms of thefree energy due to the presence of the contact line is
surface stress tensor. It is argued that this is a 2 Ö 3postulated to be a functional of l, and its minimum
tensor, given by the sum of the tension and the bendingcorresponds to the equilibrium line tension. A formal
contributions. The bending stresses result in forcesderivation of an eŒective interface Hamiltonian for a
normal to the interface. Using a diŒerent approach, wepinned interface has been proposed by several authors
derive the force balance equation, which also contains(for a recent version see, e.g., Rejmer and Napiórkowski
a contribution from the force normal to the nematic–[17]). To the best of our knowledge, an approach
isotropic interface, in agreement with Rey’s result.analogous to the interface displacement model has not
However, our generalized Young equation contains ayet been formulated for liquid crystal systems. We note,
contribution from the bulk elastic forces too, but this con-however, a paper by Sullivan and Lipowsky [18], who
tribution does not appear in the force balance equationconsidered an eŒective potential for a pinned nematic–
derived by Rey. We argue that the bulk contributionisotropic interface to study a nematic wetting layer.
is of the same order as the interfacial contribution dueA similar approach was also applied by Sluckin and
to the bending stress, and therefore it should not bePoniewierski [19] to study a wetting Fréedericksz
neglected.transition.

The paper is organized as follows. In § 2 we � rst recallIn this paper, we consider a nematic liquid crystal in
the Landau–de Gennes theory and de� ne the free energycontact with a solid substrate, and for the nematic–
functional. Then, we introduce the stress tensor andisotropic coexistence. It is assumed that partial wetting
derive the force balance equation by the application ofof the substrate by the nematic phase occurs. We are
Noether’s theorem. In § 2.3 we derive asymptotic formulaeinterested in the eŒect of long range elastic forces and
for the local tilt angle and for the position of thethe anisotropy on: (1) the local tilt angle of the nematic–
nematic–isotropic interface as functions of the distance

isotropic interface, (2) the shape of the nematic–isotropic
from the contact line. In § 2.4 we de� ne the line tension

interface, and (3) the line tension. In § 2 we study the
and recall the Kerins–Boiteux formula for the line

� rst two points, whereas the third point is discussed in
tension derived in the framework of the van der Waals

§ 3, where we apply a macroscopic approach.
theory [21]. In § 3 we postulate a simple version of the

First, we study the system by means of the Landau–
eŒective nematic–isotropic interface Hamiltonian, in the

de Gennes theory (mesoscopic approach) [1, 6, 20]. We
spirit of the interface displacement model. We show that

follow the method of Kerins and Boiteux [21], who
this macroscopic approach is consistent with the results

studied an inhomogeneous c-component � uid by means
derived in the framework of the Landau–de Gennes

of the van der Waals theory. They derived an exact
theory. We also calculate the line tension. Finally, § 4 is

formula for the equilibrium line tension in the case of a
devoted to the discussion. Mathematical details are

three-phase coexistence, by applying Noether’s theorem. presented in Appendices I and II.
They also used Noether’s theorem to present an elegant

derivation of the Neumann-triangle conditions for the

balance of forces at the contact line. Here, we follow 2. The Young equation
this route and derive the condition for the balance of Let us consider a macroscopic portion of the nematic
forces at the nematic–isotropic–substrate contact line, phase in coexistence with the isotropic phase, and in
which can be considered as a generalized Young equation. contact with a solid substrate; that is, we assume partial
It provides a relation between the local tilt angle of wetting of the substrate by the nematic phase. We choose
the nematic–isotropic interface and the distance from the the z axis of the coordinate system normal to the sub-
contact line. When the distance from the contact line strate. When the nematic drop is large (its size tends to
tends to in� nity, the local tilt angle approaches the con- in� nity) the nematic–isotropic–substrate contact line

can be considered as a straight line. Then the systemtact angle, and the original Young equation is recovered.
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1371Shape of N–I interface for partial wetting

is translationally invariant in the direction parallel to tilt angle. Our aim is now to derive a generalized Young
equation, which can be considered as a condition for athe contact line, which we choose to be the y axis. The

distance from the contact line is measured along the at a � nite distance from the contact line.
x axis, and the limit x � Õ 2 corresponds to a single
isotropic–substrate (IS) interface, whereas the limit 2.1. T he L andau–de Gennes model
x � 2 corresponds to two in� nitely remote interfaces: To describe the system on a mesoscopic scale we use
the nematic–substrate (NS) interface and the nematic– the Landau–de Gennes theory of non-uniform nematic
isotropic (NI) interface. Finally, the limit z � 2 corre- liquid crystals. This means that we neglect the density
sponds to the bulk isotropic phase. Thus, we consider changes, and assume that the only relevant variable is
the geometry of a liquid wedge, rather than a drop, the nematic order parameter Q, a second rank, trace-
which is shown in � gure 1. less and symmetric tensor [1]. In general, Q has � ve

The contact angle, ac , is related to the three surface independent components, which can be chosen to be
tensions: sIS , sNS , and sNI by the Young equation q 5 Q

zz
, p 5 1/2 (Q

xx
Õ Q

yy
), Q

xy
, Q

xz
and Q

yz
. The

number of independent components is reduced if theres
IS 5 s

NS 1 s
NI

cos a
c
. (1 )

are some symmetries in the system. For instance, in the
In the case of partial wetting by the nematic phase case of mirror symmetry y . Õ y, Q

xy
5 Q

yz
5 0, and

0 < ac < p/2. The surface tensions in equation (1) corre- only three independent components remain.
spond to � at interfaces considered separately, in The free energy density, f , has two contributions: the
the absence of external � elds. In general, sNS and sNI are Landau free energy of a uniform system, fL , which must
functions of the nematic director n̂ de� ned at the Gibbs describe the nematic–isotropic coexistence, and the con-
dividing surface [2, 24, 25], which separates the interfacial tribution due to spatial non-uniformities, fG , which has
region from the bulk. We do not show this dependence a square-gradient form. Thus, we have
explicitly, however. The values of sNS and sNI that appear

f 5 f
L 1 f

G
(2 a)in equation (1) correspond to the anchoring directions

at the NS interface and the NI interface, respectively. fL 5 A tr Q2 Õ B tr Q3 1 C(tr Q2 )2 (2 b)
We recall that the anchoring direction induced by an
interface between the nematic phase and another phase fG 5

1
2

(L 1 ‚
k
Q

ij
‚
k
Q

ij
1 L 2 ‚

j
Q

ij
‚
k
Q

ik
1 L 3 ‚

k
Q

ij
‚
j
Q

ik
)

minimizes the surface tension of that interface [1, 2]. In
the vicinity of the contact line, the local angle at which (2 c)
the NI interface is tilted with respect to the x axis diŒers
from a

c
. This local tilt angle, denoted a, is a function of where the indices run over x, y, z, ‚

k
5 ‚ / ‚ r

k
, and the

summation convention is assumed. A is proportionalthe distance from the contact line, and it approaches a
c

when x � 2 . In general, the orientations of n̂ at the to the temperature diŒerence T Õ T *, where T * denotes
the limit of stability of the isotropic phase, and B andNS and at the NI interfaces can be diŒerent, even if

both interfaces favour the same type of anchoring. This C, together with the elastic constants L 1 , L 2 and L 3 ,
are temperature independent material constants. Themeans that there is some elastic energy associated with

distortions of n̂, which decreases in a manner inversely last two invariants in equation (2 c) diŒer only by a
divergence term, which means that L

2
and L

3
enter theproportional to the distance of the NI interface from the

substrate. Because of this slow decay of the elastic Euler–Lagrange equations as the sum L 2 1 L 3 . In the
bulk nematic phase, Q 5 Qb (3/2 n̂n̂ Õ 1/2 I ), where Qb isenergy, we expect it to aŒect the condition for the local
the bulk value of the main nematic order parameter Q,
and I denotes the unit tensor. When substituted in
equation (2 c), this uniaxial approximation for Q leads
to the Frank elastic free energy with the elastic constants:
K1 5 K3 5 (3/2 Qb)2(2L 1 1 L 2 1 L 3 ) and K2 5 2(3/2 Qb)2L 1 .

The orientation of n̂ at the NI interface depends on the
sign of L 2 1 L 3 . When L 2 1 L 3 > 0 the parallel anchor-
ing is stable, whereas L 2 1 L 3 < 0 favours homeotropic
anchoring. These are the only stable con� gurations in

Figure 1. Schematic picture of the liquid wedge geometry the Landau–de Gennes theory [26]. Note that in the
considered in this paper. I, N, and S denote the isotropic latter case K2 > K1 5 K3 .
phase, the nematic phase, and the substrate, respectively,

The interaction of the liquid crystal with the solidand ac denotes the contact angle. l1 is the thickness of a
substrate is mimicked by a surface free energy densitynematic-like thin � lm adsorbed at the isotropic–substrate

interface. f
s
(Q

0
), where Q

0 5 Q(x, z 5 0) [6, 20]. The simplest
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1372 A. Poniewierski

choice for fs is fs 5 Õ h1 (Q0 )
zz

, where h1 denotes the In general, Se is not symmetric. Let us consider a small
deformation: r ¾ 5 r 1 u (r), and assume that the ordersurface � eld. When h1 > 0 the NS interface favours

homeotropic anchoring, whereas h
1 < 0 corresponds to parameter does not change, i.e. Q ¾ (r ¾ ) 5 Q(r). Keeping

only linear terms in u we � ndplanar anchoring. Conical anchoring can be realized
too, provided that fs also contains quadratic terms in
Q0

[6]. However, for our present purpose the exact DF
V

[Q] 5 F
V ¾ [Q ¾ ] Õ F

V
[Q] 5 P

V

d3r Se
kl

(r) ‚
k
u
l
(r)

form of fs is not required.
The free energy functional per unit length of the

(9)
contact line of length L is given by

which shows that Se is the stress tensor. It is easy to
recognize Se as a generalization of the Ericksen stressF

V
[Q]/L 5 P

A

dx dz[ f (Q, = Q) 1 d(z) fs(Q)] (3 )
tensor [1] to the case where both the director and the
order parameters can vary in space. The latter is de� nedwhere A is a large but � nite domain in the xz plane, V
as follows: se

kl
5 sd

kl
Õ pd

kl
, where sd

kl
5 Õ [ ‚ fd/ ‚ (‚

k
nÃ
i
)] ‚

l
nÃ
iis the volume occupied by the system, and d(z) is the

is the distortion stress tensor, f
d

is the Frank distortionDirac delta function. The shape of A will be speci� ed
free energy, and p 5 Õ f

d 1 const is the pressure (herelater. Formally, we can minimize F
V

[Q] as if all nine
we prefer to use the symbol Se for the Ericksen stresscomponents of Q were independent. The constraints:
tensor to avoid confusion with the surface tension). Fartr Q 5 0 and Q

ij
5 Q

ji
are taken into account by the

from the interfacial regions, in a distorted bulk nematicLagrange multipliers L
ij

5 l0d
ij

Õ e
ijk

l
k
, where d

ij
is the

phase, Se reduces to the usual Ericksen stress tensor. WeKronecker delta and e
ijk

is the fully antisymmetric tensor
note that a constant term in the de� nition of p, playing[27]. This leads to the Euler–Lagrange equations
the role of a Lagrange multiplier [1], does not appear
in our expression for Se since we do not � x the volume‚

k
‚ f

‚ ‚
k
Q

ij

Õ
‚ f

‚ Q
ij

5 L
ij

(4 )
of the nematic drop. This is justi� ed as long as we
consider the vicinity of the contact line, where we maywith the boundary condition at z 5 0:
ignore gravitational forces, as well as the macroscopic
pressure diŒerence [3].‚ f

‚ ‚
z
Q

ij

Õ
‚ fs
‚ Q

ij
5 Ls

ij
(5 )

Comparing equation (6) with (8) we � nd that H
x
5 Se

xx
and H

z
5 Se

zx
, hence, equation (7) can be expressed in

where Ls
ij

5 ls0d
ij

Õ e
ijk

ls
k

are the Lagrange multipliers
the usual form of the hydrostatic equilibrium condition

for Q0 . We assume that Q is � xed on the remaining
in the x direction:

boundaries of A .

‚
x

Se
xx

1 ‚
z
Se

zx
5 0. (10)

2.2. Stress tensor and the force balance equation
We note that ‚

x
Se

xz
1 ‚

z
Se

zz
5 0 also holds if Q satis� esWe assume that the substrate is homogeneous.

the Euler–Lagrange equations, although the trans-Therefore, the system must be invariant with respect
lational symmetry in the z direction is broken by theto translations of the contact line in the x direction.
presence of the substrate. In this case, however, it is notAccording to Noether’s theorem [21, 28] (see Appendix I)
the full hydrostatic equilibrium condition in the zthe two-dimensional � eld (H

x
, H

z
), where

direction, as it does not take into account the liquid
crystal–substrate interaction potential. In the Landau–H

x
5 f Õ

‚ f

‚ ‚
x
Q

ij
‚
x
Q

ij
(6 a)

de Gennes theory, this potential is singular since it
contains the Dirac delta function d(z); see equation (3).

H
z

5 Õ
‚ f

‚ ‚
z
Q

ij
‚
x
Q

ij
(6 b) It results from the de� nition of Se that the nematic–

isotropic surface tension for a single NI interface, tilted
with respect to the x axis, is related to the componenthas a vanishing divergence,
Se

x ¾ x ¾ 5 f as follows
‚
x
H

x
1 ‚

z
H

z
5 0 (7 )

provided that Q satis� es the Euler–Lagrange equations. sNI 5 P z ¾m ax

z¾m in

Se
x ¾ x ¾ (z ¾ ) dz ¾ (11)

For our purpose, it is convenient to consider H
x

and H
z

as components of a second rank tensor, de� ned as
where the z ¾ axis is normal to the NI interface, and thefollows
limits of integration are in the bulk phases.

To obtain a force balance equation correspondingSe
kl

5 f d
kl

Õ
‚ f

‚ ‚
k
Q

ij
‚
l
Q

ij
. (8 )

to the Young equation, we follow the Kerins–Boiteux
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1373Shape of N–I interface for partial wetting

method; that is, we integrate equation (10) over A and Next, we perform the integral along the x 5 Õ R boundary
(path I), that istransform the integral, by virtue of Gauss’ theorem, to

the contour integral over the boundary of A [21]. This
gives I

Õ R
5 P zm ax

0
(Õ Se

xx
) dz 5 Õ P zm ax

0
f dz (15)

Q
‚ A

k̂ ¯ Se¯ x̂ dl 5 0 (12) where z
max

is in the bulk isotropic phase, and we have
assumed that the dependence of Q on x can be neglected.
Integration along x 5 R1 (path III) is similar to thatwhere k̂ is the outward local normal to ‚ A .
along x 5 Õ R; it givesEquation (12) expresses the balance of forces acting on

A in the x direction. The force Y acting on a surface
element of normal vector k̂ is given by Y 5 k̂ ¯ Se. It can I

R1
5 P zNS

0
(Se

xx
) dz 5 P zNS

0
f dz (16)

be expressed as the sum of the component along k̂ and
the component along N̂, where N̂ is tangent to ‚ A . where the zNS denote the position of the Gibbs dividing
Thus, we have surface for the NS interface. In other words, we assume

that in the interfacial region 0 < z < z
NS

the variationsY
x

5 Se
kk

( k̂ ¯ x̂) 1 Se
kN

(N̂ ¯ x̂) (13)
of Q with x can be neglected, and the surface tension is

where Se
kk

5 k̂ ¯ Se¯ k̂, and Se
kN

5 k̂ ¯ Se¯ N̂. a function of n̂ at zNS . Above zNS there is a non-uniform
In principle, the contour ‚ A can be arbitrary. However, bulk nematic phase described by the director � eld. The

in order to obtain meaningful physical quantities from sum of integrals (14–16) gives
the integral, we have to make some assumptions con-

I
Õ R

1 I0 1 I
R1

5 sNS
Õ sIS . (17)

cerning the form of Q on ‚ A . Therefore, we choose the
contour locally normal to the IS, NS and NI inter- To calculate the contribution from the NI inter-
faces, which is shown in � gure 2. We assume that R is face, we express the tensor Se in the coordinate system
su� ciently large that we have well de� ned bulk phases x ¾ y ¾ z ¾ rotated in the xz plane by the angle a

R
5 a(R),

between the interfaces. This means that in the interfacial (see � gure 2). According to equation (13) k̂ is tangent
regions Q can be well approximated by the solution of and N̂ is normal to the NI interface, and we have
the Euler–Lagrange equations for a single IS, NS, or NI

Y
x

5 cos a
R

Se
x ¾ x ¾

Õ sin a
R

Se
x ¾ z¾

(18)
interface. Since the director � eld is usually distorted in

where x̂¾ 5 k̂ and ẑ ¾ 5 N̂. To express Se in the x ¾ y ¾ z ¾the bulk nematic phase, we also have to take into
frame, we simply replace, in de� nition (8), the derivativesaccount the elastic free energy of this distortion.
with respect to x and z by the derivatives with respectFirst, we integrate along the z 5 0 boundary (path II
to x ¾ and z ¾ . We assume that the derivatives parallel toin � gure 2) using boundary conditions (5). Since the
the NI interface can be neglected in the interfacialintegration is anti-clockwise, we have
region; thus, ‚

x ¾ Q# 0, Se
x ¾ x ¾ # f and Se

z¾ x¾
# 0. In general,

Se
x ¾ z ¾ Þ Se

z¾ x ¾ but we show in Appendix II that the anti-I
0 5 P R1

Õ R

(Õ Se
zx

) dx 5 P R1

Õ R

‚ f
s

‚ Q
ij

‚
x
Q

ij
dx

symmetric part of Se is related to the derivative ‚ f / ‚ h.
The latter expresses an in� nitesimal change of f when5 fs[Q(R1 , 0)] Õ fs[Q (Õ R, 0)]. (14)
Q is rotated by the angle dh in the xz plane, while the
coordinates remain unchanged. This relation is given by

Se
x ¾ z ¾

Õ Se
z ¾ x ¾ 5

‚ f

‚ h
(19)

hence, Se
x ¾ z ¾

# ‚ f / ‚ h in the interfacial region. If the
system has the mirror symmetry y . Õ y, and this is
the case considered below, then h de� nes the director
orientation in the xz plane: n̂ 5 (sin h, 0, cos h). In the
Landau–de Gennes theory, f does not depend on h in
the bulk nematic phase because fG 5 1/2 K( = h)2, where
K 5 K1 5 K3 . This means that ‚ f / ‚ h Þ 0 only in the

Figure 2. A fragment of the domain A considered in the text.
interfacial region. Using the Euler–Lagrange equationThe boundaries of A are shown as paths I–IV. The
for h we express ‚ f / ‚ h as followsremaining boundary closing the contour ‚ A in the bulk

isotropic phase is not shown. The point (R, l
R

) is on the
NI interface, and a

R
denotes the local tilt angle. The axis

‚ f

‚ h
5 ‚

x ¾
‚ f

‚ ‚
x ¾ h

1 ‚
z ¾

‚ f

‚ ‚
z ¾

h
# ‚

z¾
‚ f

‚ ‚
z¾

h
(20)

z ¾ is normal to the NI interface at x 5 R.
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1374 A. Poniewierski

where again we have neglected the derivative parallel to a
R

5 ac 1 da
R

, we � nd from equation (24) that because
of the elastic force contribution to the balance of forcesthe NI interface. We can now perform the integration of

Y
x

over the interfacial region (path IV in � gure 2) by da
R

~ R Õ 1, unless the last two terms in (24) exactly
cancel each other. The local tilt angle is related to l(R) bycombining equations (18–20). This gives
tan a

R
5 dl/dR, hence, l (R) Õ R tan ac

~ ln R, for R � 2 .
This means that the elastic forces cause a logarithmicP z ¾m ax

z¾NI

Y
x

dz ¾ 5 P z ¾m ax

z ¾NI
Acos a

R
f Õ sin a

R
‚ f

‚ hB dz ¾
deviation of l (R) from the asymptotic linear behaviour
characteristic for simple � uids.

5 cos a
R

sNI 1 sin a
RA ‚ f

‚ ‚
z ¾

hB
z¾NI

(21) To make quantitative predictions we have to assume
the asymptotic form of h(x, z) far from the three-phase

where z ¾max is in the bulk isotropic phase and z ¾NI denotes contact line. In the bulk nematic phase, it must satisfy
the position of the Gibbs dividing surface for the NI the Euler–Lagrange equation
interface. The last term in equation (21) is the projection

= 2h 5 0. (25)
of the force normal to the NI interface onto the x axis.

Here, we assume that the asymptotic solution ofLike the surface tension, it comes from the integration
equation (25) does not depend on the distance fromover the interfacial region. For a single, � at NI interface
the contact line, but only on the angular variable
w 5 arctan(z/x), i.e.A ‚ f

‚ ‚
z ¾

hB
z ¾NI

5
‚ s

NI
‚ h ¾NI

(22)

h(x, z) 5 hNS 1
hNI

Õ hNS
ac

arctan
z
x

(26)where h ¾NI de� nes the director orientation with respect
to ẑ ¾ at z ¾NI . where hNI 5 h ¾NI

Õ ac and hNS are the anchoring directionsFinally, we calculate the contribution from the elastic
of the NI and the NS interfaces, respectively, expressedforces. The calculation is performed in the xyz frame. In
in the xyz frame. A schematic picture of the directorthe bulk nematic phase, variations of the order para-
� eld is shown in � gure 3. We consider the followingmeters can be neglected, and the Se have the following
three cases of the anchoring directions at the NS and thecomponents: Se

xx
5 1/2 K[( ‚

z
h)2 Õ ( ‚

x
h)2], Se

xz
5 Se

zx
5

NI interfaces: (a) homeotropic–homeotropic, (b) homeo-Õ K( ‚
x
h)( ‚

z
h), and Se

zz
5 Õ Se

xx
. The elastic contribution

tropic–planar, and (c) planar–homeotropic, which areto the total force is given by
compatible with n̂(r) in the xz plane. It is straightforward
to show that for h(x, z) given by equation (26),yel 5 P b

a

(Se
xx

kÃ
x

1 Se
zx

kÃ
z
) dl 5 P b

a

(Õ Se
zx

dx 1 Se
xx

dz)
Se

zx
5 1/2 Kg ‚

x
( ‚

x
h) and Se

xx
5 Õ 1/2 Kg ‚

z
( ‚

x
h), where

g 5 (hNI
Õ hNS )/ac . The substitution of Se

xx
and Se

zx
to

(23)
(23) gives

where a and b are points on the NS and the NI dividing
surfaces, respectively. We have also used the fact that yel 5 Õ

1

2
Kg[ ‚

x
h(b) Õ ‚

x
h(a)]. (27)

the local tangent direction to ‚ A is given by (Õ kÃ
z
, kÃ

x
).

The sum of all contributions, given by equations (17),
(21) and (23), leads to the following force balance
equation in the limit of large R

sNS
Õ sIS 1 cos a

R
sNI 1 sin a

R
K(N̂

R
¯ = h)NI 1 yel 5 0

(24)

where N̂
R

is normal to the NI interface at x 5 R,
and K (N̂

R
¯ = h)

NI 5 [ ‚ f / ‚ ( ‚
z ¾

h)]
z ¾NI

. Equation (24) can
be considered as a generalization of the Young equation
to the case of large but � nite R.

2.3. Asymptotic analysis
We expect that the last two terms in equation (24)

decay like l Õ 1
R

, where l
R

5 l (R) is the distance between
the NS and the NI interfaces measured along the z

Figure 3. Schematic picture of the asymptotic director � eld.
direction. Since for large R, l

R
~ R tan ac , we recover the Anchoring at the NS and the NI interfaces is, respectively,

Young equation, (1), for the contact angle in the limit (a) homeotropic and homeotropic, (b) homeotropic and
planar, (c) planar and homeotropic.R � 2 . At a � nite R, a

R
deviates from a

c
. Assuming
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1375Shape of N–I interface for partial wetting

If we ignore the thickness of the interfacial regions yel due to the three interfaces and taking the limit of in� nite
domain (the thermodynamic limit). We postpone theassumes the following simple form
calculation of t to the next section, where we develop a
macroscopic approach. Here, we recall only the resultsyel 5

1
2

Kg2
sin w

R
r

R
(28)

for a c-component � uid system.
Kerins and Boiteux [21] considered a three-phase � uidwhere tan w

R
5 l

R
/R and r2

R
5 R2 1 l2

R
. We also � nd that

system with a line of contact. Applying the van der Waals
theory to the c-component system, and using Noether’sK(N̂

R
¯ = h)NI 5 Kg

cos (a
R

Õ w
R

)

r
R

. (29)
theorem, they derived for t formula analogous to that for
the surface tension. In our notation, the Kerins–BoiteuxFinally, equation (24) can be expressed as follows
free energy density is given by f 5 fG ( = r) 1 fL(r), where
r 5 (r1 , … , rc) is a c-component density (or ordersNS

Õ sIS 1 cos a
R

sNI 1
1
2

Kg2
sin w

R
r

R parameter),

1 Kg
sin a

R
r

R
cos (a

R
Õ w

R
) 5 0 (30)

fG 5
1

2 �
c

i,j=1
M

ij
( = r

i
¯ = r

j
) (33)

where w
R

5 a
c 1 dw

R
for large R. From equations (1) and

(30) we � nd the leading term in the asymptotic expansion and = denotes a two-dimensional gradient. The function
of da

R
: f

L
(r) is positive, and vanishes in the bulk regions of

coexisting � uid phases. The equilibrium line tension is
given by the Kerins–Boiteux formula [21]da

R
~

K
2sNIrR

[(g 1 1)2 Õ 1] #
K cos ac
2sNIR

CADha
ac
B2

Õ 1D
(31) t 5 P +2

Õ 2

dx P +2

Õ 2

dz[ fG ( = r) Õ fL(r)] (34)

hence,

where r satis� es the Euler–Lagrange equations. The
l
R

~ R tan ac 1
K ln (R/R0 )
2sNI cos ac

CADha
ac
B2

Õ 1D 1 l0 integrand tends to zero both in the bulk regions and in
the interfacial regions far from the contact line. Thus,

(32) it is non-zero only in the vicinity of the contact line.
Perković et al. [30] showed that formula (34), withwhere l0 is the integration constant, and R0 is a cut-oŒ
Ÿ +2
Õ 2

dz replaced by Ÿ +2
0

dz, applies also in the caselength. By Dha 5 h ¾NI
Õ hNS we have denoted the diŒerence

of a two � uid phase–solid substrate contact line, andof anchoring directions measured with respect to the
the proof was given for a one-component r. Since theinterface normals.
Landau–de Gennes theory has a similar formal structureIn the case of homeotropic anchoring at both the NS
to the van der Waals theory considered in [30] it isand the NI interfaces, h ¾

NI 5 h
NS 5 0, and da

R
< 0. For

natural to expect that an analogous formula to (34)R > R0 , l
R

deviates from linear behaviour in such a way
holds also in the case of the nematic–isotropic–substratethat the NI interface is shifted towards the substrate. To
contact line; however, we do not present a formalmake a rough estimate of this eŒect, we have used the
proof here.data for 5CB [29] (in fact the anchoring at the NI

A natural question arises concerning the convergenceinterface is tilted for 5CB): K 5 2.1 Ö 10 Õ 7 erg cm Õ 1 and
of t in the thermodynamic limit. For a comprehensivesNI 5 1.5 Ö 10 Õ 2 erg cm Õ 2, which gives K/(2sNI ) 5 700 AÊ .
review of the behaviour of t near a wetting transition inFor h ¾NI 5 Ô p/2 (planar anchoring ) and hNS 5 0 (homeo-
simple � uid systems see [13]. Whether t tends to atropic anchoring) , we have da

R
> 0, and the logarithmic

� nite value or diverges when the thermodynamic limitcorrection to l
R

is also positive when R > R0 . We obtain
is taken depends, in general, on an eŒective interactionthe same result also for h ¾

NI 5 0 and h
NS 5 Ô p/2. The

potential between the substrate and the two � uid-phasecase of planar anchoring at both interfaces is diŒerent,
interface. In liquid crystal systems, the problem is moreas then the orientation of n̂ parallel to the contact line
complicated because of long range elastic forces. Inis energetically favourable .
principle, t can be studied in the framework of the
Landau–de Gennes theory. However, a macroscopic2.4. L ine tension

The line tension, t, is de� ned as the excess free energy approach seems to be the best way of studying the
problem of convergence of t in the thermodynamic limit,over that in the bulk phases and the interfaces, per unit

length of the contact line [12]. Thus, t is obtained from in which we are mainly interested here. On the other hand,
if we were interested in the contribution to t comingequation (3) by subtracting the surface contributions
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1376 A. Poniewierski

from the core region, where the description in terms of where
Q is essential, we should use the Landau–de Gennes or
a microscopic theory. fa 5

1

2
wNS (h0

Õ hNS )2 1
1

2
wNI (hl

1 arctan lÇ Õ h ¾NI )2

is the sum of anchoring energies at the NS and the3. The interface Hamiltonian
NI interfaces, V ( l ) denotes the excess free energy of aIt is instructive to rederive the results of the previous
uniform nematic � lm of thickness l, and a piecewise con-Section using the interface Hamiltonian approach. We
stant function c (x) must be included to ensure that thedefer rigorous derivation of such a Hamiltonian for a
integrand vanishes for |x| � 2 . The qualitative behaviourpinned NI interface to a future work. Here, we simply
of V (l ) is shown in � gure 4 [13]. It has a minimum atpostulate a form of the Hamiltonian capable of repro-
l
1 5 lim

x � Õ 2
l (x), V ( l

1
) 5 0, which corresponds to a thin,ducing the shape of the NI interface in the asymptotic

nematic-like � lm at the IS interface. This is the globallimit of large separations from the substrate. In the case
minimum in the case of partial wetting. There is also aof simple � uids, the interface Hamiltonian is a functional
local minimum at l 5 2 corresponding to a metastableof only one variable, i.e. the separation of the interface
wetting layer, and V (2 ) 5 sNS 1 sNI

Õ sIS 5 Õ S, wherebetween two � uid phases from the substrate. In the
S is the spreading coe� cient [3]. We also assume thatpresence of orientational degrees of freedom, orientations
V (l ) Õ V (2 ) goes to zero faster than l Õ 1. In the mostof the director at the NS and the NI interfaces should
general form, V could also be a function of the orien-also be included. Thus, if twist deformation is not present
tational variables h0 and h

l
. Since we are interested onlywe deal with three � eld variables: the distance l(x)

in the asymptotic form of l (x), for x � 2 , we do notbetween the NI interface and the substrate, and the two
consider such a dependence, however. In the functionalangles: h0 (x) and h

l
(x), corresponding to the director

tÄ , we have also neglected the derivatives hÇ
0

and hÇ
l
, i.e. theorientations at z 5 0 and z 5 l(x), respectively.

contributions to the free energy due to inhomogeneitiesFirst, we calculate the contribution to the free energy
of the boundary conditions, which could be included infrom the elastic forces. Let us consider a bulk nematic
a more re� ned version.phase contained between two � at surfaces: z 5 0 and

Let us assume � rst homeotropic anchoring at bothz 5 x tan a. We assume that n̂ is in the xz plane, and its
interfaces. We minimize tÄ with respect to h0 and h

l
toorientation is given by h(x, z) satisfying the Euler–

obtainLagrange equation = 2h 5 0, with the boundary con-
ditions: h(x, 0) 5 h

0
and h(x, x tan a) 5 h

l
. The solution

is given by h
0 5 Õ

bNS lÇ

l 1 2blÇ /arctan lÇ
(38 a)

h(x, z) 5 h
0 1

h
l
Õ h

0
a

arctan (z/x). (35) h
l
5 Õ

l arctan lÇ 1 bNS lÇ

l 1 2blÇ /arctan lÇ
(38 b)

The contribution to the elastic free energy from a portion where b 5 1/2(bNS 1 bNI ), and bNS 5 K/wNS , bNI 5 K/wNIof the nematic phase contained between x Õ 1/2 dx and denote the extrapolation lengths for the NS and the NI
x 1 1/2 dx is dFel 5 1/2 K (h

l
Õ h0 )2 tan a dx/(az), where interfaces, respectively. Substituting equation (38) into

z 5 x tan a. To obtain the elastic free energy density we (37) we express tÄ in terms of the � eld l(x) alone as
apply this formula locally replacing z and tan a by l (x)
and lÇ 5 dl/dx, respectively, which gives

fel 5
1
2

K
(h

l
Õ h0 )2

l A lÇ

arctan lÇ B . (36)

In the � at interface limit (lÇ 5 0), we recover the usual
expression for the elastic free energy in the one elastic-
constant approximation.

We consider the excess free energy due to the presence
of the three-phase contact line, i.e. the line tension
functional

Figure 4. Qualitative behaviour of the eŒective interaction
potential V (l ). S is the spreading coe� cient. The globaltÄ [l, h

0
, h

l
] 5 P2

Õ 2

{s
NI

[(1 1 lÇ 2 )1/2 Õ 1]
minimum of V (l ) at l1 5 lim

x� Õ 2
l(x) corresponds to a thin,

nematic-like � lm, whereas the local minimum at l 5 2
corresponds to a metastable wetting layer.1 V (l) 1 f

el 1 f
a 1 c(x)} dx (37)
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1377Shape of N–I interface for partial wetting

follows integral

1
2

s( l)lÇ 2 Õ V1 ( l) 5 0 (45)tÄ [l ] 5 P2

Õ 2
GsNI[(1 1 lÇ 2 )1/2 Õ 1] 1 V ( l)

hence,
1

1
2

K
lÇ arctan lÇ

l 1 2blÇ /arctan lÇ
1 c(x)H dx (39)

lÇ 5 C2V
1
( l)

s( l) D1/2
. (46)

hence c(x) 5 0, for x < 0, and c(x) 5 sNI (cos ac
Õ 1/cos ac),

for x > 0. Since we are interested in the asymptotic If V (l ) is of short range, we can solve equation (46) in
the region of large l, where V (l )# V (2 ). The solution isanalysis for large l, we approximate the third term in

(39) by (1/2 K/l )lÇ arctan lÇ . The minimum condition for given in an implicit form:
tÄ [l] leads to the Euler–Lagrange equation, which has [(l 1 a

1
)( l 1 a

2
)]1/2

the following � rst integral
1 (a1

Õ a2 ) ln[( l 1 a1 )1/2 1 (l 1 a2 )1/2]

sNIC1 Õ
1

(1 1 lÇ 2 )1/2D Õ V (l) 1
1

2
K

lÇ 2
l (1 1 lÇ 2 )

5 0. 5 acx 1 const (47)

where a1 5 2b 1 K/sNI and a2 5 2b 1 (Dha/ac )2K/sNI . In
(40) the asymptotic limit of x � 2 , equation (47) is consistent

with asymptotic formula (32) applied to small contactWe can also express the above condition in terms of the
angles.local tilt angle, a 5 arctan lÇ , as follows

To obtain the equilibrium line tension we substitute
equation (46) into (44), which gives

s
NI

cos a 1 s
NS

Õ s
IS 1 V ( l) Õ V (2 ) Õ

1
2

K
sin2 a

l
5 0.

t 5 P l0

l1
G[2V1 ( l)s(l)]1/2 Õ K

Dh
a

l 1 2bH dl(41)

Now, we consider the asymptotic limit of x � 2 and
1 P2

l0
G[2s(l)/V1 (l)]1/2[V1 (l) Õ V (2 )]express the local tilt angle as a 5 a

c 1 da, where da is
small. The � rst term in the asymptotic expansion of l(x)
is x tan ac , which substituted into equation (41) gives

Õ K
Dha

l 1 2bH dl (48)

da# Õ
K cos ac
2sNIx

. (42)
where l0 5 l(0). Note that (2s/V1)1/2 � 2/ac when l � 2 .
Thus, for large l and Dha Þ 0, the integrand in the second

Thus, we have recovered equation (31). integral decays like [(Dha/ac)
Õ 1]KDha/(l 1 2b). When

To study the line tension, we return to the general Dha 5 0 it decays like (2/ac)
[V ( l ) Õ V (2 )], which is faster

case of diŒerent anchoring directions at the NI and than the l Õ 1 decay. This means that t remains � nite in
the NS interfaces. However, to simplify calculations we the thermodynamic limit in the case of homeotropic
assume that the contact angle is small and lÇ is also anchoring at both interfaces. However, when the anchor-
small. Then, the functional tÄ [l] assumes the following ing directions at the NS and the NI interfaces are diŒerent,
simple form t diverges logarithmically with the size of the system.

4. DiscussiontÄ [l ] 5 P2

Õ 2
C1

2
sNI l

Ç 2 1
1
2

K
(Dha

Õ lÇ )2
l 1 2b

1 V ( l) 1 c(x)D dx
We have presented a preliminary study of the nematic–

isotropic–substrate contact line region in the case of(43)
partial wetting by the nematic phase. Using the Landau–

where c (x) # Õ 2V (2 ), for x > 0, and V (2 ) # 1/2 sNIa2c . de Gennes theory and applying Noether’s theorem, we
It is convenient to rewrite tÄ [l] as follows have derived the force balance equation at the con-

tact line. The long-range elastic forces due to diŒerent
orientations of the nematic director at the NS andtÄ [l ] 5 P2

Õ 2
C1

2
s( l)lÇ 2 Õ K

lÇ Dha
l 1 2b

1 V1 ( l) 1 c(x)D dx
the NI interfaces cause a logarithmic deviation of the
NI interface position from the usual asymptotic form(44)
l (x)~ const 1 x tan ac . The characteristic length scale
of this deviation, K/(2sNI ), can be as large as a fewwhere s(l ) 5 sNI 1 K/(l 1 2b), and V1(l) 5 V (l) 1 1/2 K(Dha)2/

(l 1 2b). The Euler–Lagrange equation has the � rst hundred AÊ . This conclusion is based on a plausible
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1378 A. Poniewierski

assumption concerning the nematic director � eld in the Young equation derived by Rey (equation (27) in [23])
resembles our equation (24) if we put yel 5 0. Indeed,bulk nematic phase, far from the three-phase contact line.

We have also proposed a simple macroscopic model, substituting (22) into (24) we obtain
which is similar in spirit to the interface displacement
model. However, it takes into account also the long sNS

Õ sIS 1 cos a
R

sNI 1 sin a
R

‚ sNI
‚ h ¾NI

5 0 (49)
range elastic forces, which do not appear in simple � uid
systems. In the framework of the macroscopic model,

where ‚ sNI/ ‚ h ¾NI is equal to the bending coe� cient BBNwe have shown that the behaviour of the line tension
for the NI interface introduced by Rey. Equation (49)in the thermodynamic limit depends on the type of
is to be compared with equation (27) in [23] oranchoring at the NS and the NI interfaces. We note that
equation (11) in [22]. Since in these two equationsif the asymptotic behaviour of l was simply l~ xac (for
presented by Rey the bending term appears with diŒerentsmall contact angles), i.e. without the logarithmic term,
signs we note that our equation (49) is consistent withthen t would diverge logarithmically with the system
the latter.size, also in the case of homeotropic anchoring at both

The lack of the bulk elastic term in Rey’s force balanceinterfaces. This is a simple conclusion from equation (43).
equation is not discussed by the author. As our derivationHowever, when the asymptotic form l~xac

Õ (K/2sNI ) ln x,
based on Noether’s theorem shows, in general this termfor Dha 5 0, is substituted into (43) then the two terms
should not be neglected. It vanishes, however, when thedecaying like x Õ 1 in the integrand cancel each other out,
bulk director � eld is not distorted. We expect it to occurand the integral is � nite. In other words, an increase of
when the distance l between the NI and the NS interfacesthe bulk free energy due to the distortion of the director
is smaller than b

max
, the larger of the two extrapolation� eld is cancelled out by a decrease of area of the NI

lengths [1]. Then, the force balance equation reducesinterface, compared with the case of linear pro� le. No
to that derived by Rey. In our considerations, we havesuch cancellation occurs when Dha Þ 0. In that case, the
implicitly assumed an asymptotic limit of l& bmax . Ininterfacial area increases compared with linear l (x), and
principle, it is possible to imagine a su� ciently largethis increase, together with the free energy of distortion,
nematic drop to satisfy this asymptotic condition. Ingives rise to the divergence of t in the thermodynamic
practice, a measurement of a well de� ned contact anglelimit. Although we have obtained these results only for
is possible when the distance from the contact line issmall contact angles, we believe that they are valid in
large compared with the size of the core region, butgeneral.
small compared with the droplet size [3]. Thus, in theIn two recent papers, Rey [22, 23] derived the force
case of weak anchoring or close to complete wetting bybalance equations for nematic contact lines, which are
the nematic phase, it may be di� cult to observe thegeneralizations of the Neumann and Young equations.
asymptotic region l& bmax , in which the director � eld isThe � rst concerns the situation when the nematic phase
distorted.coexists with two isotropic � uid phases, which has not

Finally, we note that the anchoring energy used inbeen considered in our study. Therefore, we concentrate
the interface Hamiltonian considered in § 3 could beon the comparison of Rey’s version of the generalized
replaced by the Rapini–Papoular form [31]. It is moreYoung equation with our version. The starting point in
suitable when deviations of the surface director from the[23] is also the Landau–de Gennes theory. However,
anchoring direction are large, and this usually occursthe contribution to the free energy from the nematic–
when l & bmax . To study the vicinity of the contactisotropic interface appears explicitly (equation (3 a) in
line in more detail, in particular, a possible cross-over[23]) as a surface integral over the interfacial free energy
between the regions of distorted and uniform directordensity, cNa, treated as a function of the interfacial order
� elds, it might be necessary to consider the derivativesparameter Q and the surface normal. The anisotropic
hÇ
0

and hÇ
l

in the interface Hamiltonian. At the moment,(Q dependent) part of cNa is assumed to have the same
we also do not know the precise form of V ( l ). Therefore,quadratic form as fs (Q) for the nematic phase in contact
it would be desirable to derive an interface Hamiltonianwith an isotropic solid substrate [6, 20]. The force
for the nematic phase in coexistence with the iso-balance equation at the contact line is expressed in
tropic phase (or vapour) from the Landau–de Gennesterms of the surface stress tensor t. It is argued that in
formalism or a microscopic theory. We defer studies ofnematic liquid crystals t is generally a 2 Ö 3 tensor. The
this non-trivial problem to future work.components of t parallel to the interface are the usual

interfacial tensions. The remaining two components
correspond to bending stresses, and they contribute to The author thanks the referee for pointing out

ref. [22]. We gratefully acknowledge the partial supportthe balance of forces only if the interface is tilted with
respect to the substrate. We note that the generalized of this work by KBN grant No. 3T09A07212.
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1379Shape of N–I interface for partial wetting

Appendix I does not explicitly depend on x. Thus, we have found
thatIn this Appendix, we show how Noether’s theorem

works in a special case of one � eld in a two dimensional
space. ‚

xAf Õ
‚ f

‚ ‚
x
W

‚
x
WB 1 ‚

yA Õ
‚ f

‚ ‚
y
W

‚
x
WB 5 0. (A5)

Let us consider the following functional

In the one dimensional case, the function H 5 (‚ f / ‚ WÇ )WÇ Õ f ,
F

A
[W] 5 P

A

dx dy f (W, = W, x, y) (A1) where WÇ 5 dW/dx, is the Hamiltonian, and we have
dH /dx 5 0 or H 5 const, which is simply the energy
conservation law.

where W 5 W (x, y), and A is a closed, simply-connected
If f depends neither on x nor y, we have in addition

region in the two dimensional space. The function f is
to (A5)

usually called the Lagrangian. Then, we assume a small
deformation of the variable x, that is, the point (x, y) is

‚
xA Õ

‚ f

‚ ‚
x
W

‚
y
WB 1 ‚

yAf Õ
‚ f

‚ ‚
y
W

‚
y
WB 5 0. (A6)transformed to (x ¾ , y ¾ ) as follows

Generalization to the case of n � eld variables, Wb,x ¾ 5 x 1 u(x)

y ¾ 5 y
(A2)

(b 5 1, … , n), satisfying the Euler–Lagrange equations is
straightforward. One simply replaces in equations (A5)
and (A6) the terms ( ‚ f / ‚ ‚

i
W) ‚

j
W, where i, j 5 x, y, bywhere u (x) is small. The region A is transformed to

the terms Snb=1
( ‚ f / ‚ ‚

i
Wb ) ‚

j
Wb.A ¾ . The � eld variable does not change, i.e. DW 5

W ¾ (x¾ , y ¾ ) Õ W (x, y) 5 0. More generally one can consider
a transformation of both the space points and the � eld Appendix II
variable. Now, we can calculate the change of the In this Appendix, we derive identity (19). Let us � rst
functional F due to transformation (A2). Keeping only de� ne the following two auxiliary second rank tensors:
the terms linear in u we � nd

U
ij

5
‚ f

‚ ‚
k
Q

il
‚
k
Q

jl
(A7)

DF
A

5 F
A ¾ [W ¾ ] Õ F

A
[W]

and5 P
A

dx dyC ‚ f

‚ ‚
x
W

D( ‚
x
W) 1

‚ f

‚ ‚
y
W

D( ‚
y
W)

V
ij

5
‚ f

‚ ‚
k
Q

li
‚
k
Q

lj
. (A8)

1 f
x
u 1 f

du
dxD (A3)

DiŒerentiation of f with respect to ‚
k
Q

ij
gives—see

equation (2 c)where f
x

5 ( ‚ f / ‚ x)W, = W , D( ‚
x
W) 5 ‚

x ¾ W ¾ Õ ‚
x
W 5

Õ (‚
x
W)(du/dx), and D( ‚

y
W) 5 0. After some manipulations ‚ f

‚ ‚
k
Q

ij
5 L

1 ‚
k
Q

ij
1 L

2 ‚
l
Q

il
d
jk

1 L
3 ‚

j
Q

ik
. (A9)we obtain from (A3) the following expression

It results from equations (A7–A9) that the tensor UDF 5 P
A

dx dyG ‚
xCuAf Õ

‚ f

‚ ‚
x
W

‚
x
WBD is symmetric, whereas V is not symmetric. Now, we

consider an in� nitesimal rotation in the xz plane

1 ‚
yA Õ u

‚ f

‚ ‚
y
W

‚
x
WB Re 5 I 1 e(x̂ẑ Õ ẑx̂) (A10)

where e is the in� nitesimal rotation angle. Of course, f
1 A ‚

x
‚ f

‚ ‚
x
W

1 ‚
y

‚ f

‚ ‚
y
W

Õ
‚ f

‚ WB u ‚
x
WH . (A4) must be invariant with respect to arbitrary rotations of

both the coordinates and Q. Applying Re to f we � nd
the coe� cient of e in the expansion of f , which mustNow, we assume that W is a solution of the Euler–
vanish, i.e.Lagrange equation, so that the last term in the integrand

vanishes, and that u (x) 5 const. Then, the invariance of (U
xz

Õ U
zx

) 1 (V
xz

Õ V
zx

) Õ (Se
xz

Õ Se
zx

) 5 0 (A11)
F with respect to translations along x implies that the
divergence term in the integrand must vanish, since the where the � rst term vanishes because U is symmetric.

We can also consider the situation when only Q isregion A is arbitrary. It is easy to show by direct
calculation that the divergence term vanishes, provided rotated in the xz plane, while the coordinates remain

unchanged. An in� nitesimal rotation by the angle dhthat W satis� es the Euler–Lagrange equation, and f
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