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A nematic liquid crystal in contact with a solid substrate is studied in the partial wetting
regime. Both a mesoscopic Landau—de Gennes theory and a macroscopic effective interface
Hamiltonian approach are considered. A generalized Young equation for the balance of forces
at the three-phase contact line is derived, which takes into account corrections due to
distortions of the nematic director field. It is also shown that the asymptotic form of the
separation of the nematic-isotropic interface from the substrate has a logarithmic correction
to the usual linear behaviour. The characteristic length scale of this correction is given by the
ratio K/(20y;), where K and oy, are the average elastic constant and the nematic-isotropic
surface tension, respectively, and is of the order of a few hundred angstroms. Then, a simple
form of an effective interface Hamiltonian is proposed, and results consistent with the
predictions of the Landau—-de Gennes theory are obtained. It is shown, in the framework of
this macroscopic approach, that the line tension associated with the contact line remains
finite, when the thermodynamic limit is taken, if the anchoring at both the nematic-substrate
and the nematic-isotropic interfaces is homeotropic However, in the case of different
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anchoring directions, the line tension diverges logarithmically with the system size.

1. Introduction

Liquid crystals can be oriented by surfaces, and
this well known phenomenon is called anchoring [1].
Although anchoring is a surface phenomenon, in the
absence of bulk external fields it is responsible for
the orientation of liquid crystal molecules far from the
surface. A comprehensive review of anchoring in liquid
crystals can be found in [2]. Wetting is another well
known surface phenomenon [3-6]. It can be observed
in very different systems such as simple and complex
fluids, mixtures, and solids. In contrast, orientational
anchoring is specific to liquid crystals. Recently there has
been growing interest in the relation between anchoring
and wetting in liquid crystal systems [7-10]. For
instance, Vandenbrouck et al. [8] observed a divergence
of the extrapolation length, which is related to the
anchoring strength, in 5CB drops on silicon wafers close
to the nematic—isotropic transition. Rodriguez-Ponce et al.
[9] showed that an anchoring transition between states
with planar and homeotropic director configurations
may play the role of a prewetting transition in the regime
of complete wetting of the substrate by the nematic
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phase. On the experimental side, Alkhairalla et al. [10]
studied anchoring and orientational wetting of a nematic
substance at the interface with a series of self-assembled
monolayers using an evanescent wave ellipsometric
technique.

Compared with simple fluids, wetting in nematic liquid
crystals is more complex due to possible competition
between different anchoring favoured by the nematic—
substrate and the nematic—isotropic interfaces. This may
lead to a transition between two nematic wetting phases,
one of which is uniform and the other has a distorted
direction configuration [11]. In the case of partial
wetting, the nematic—isotropic interface is tilted with
respect to the substrate, and the director field is usually
distorted, even if both interfaces favour the same type
of anchoring.

The excess free energy of the inhomogeneous region
in the neighbourhood of the three-phase contact line
is known as the line tension [12]. The line tension
in simple fluid systems has been studied by several
authors (see for instance [13] and references therein).
An interesting question arises concerning the existence
of the line tension in the thermodynamic limit, and
about its behaviour when the transition from partial to
complete wetting is approached. In early work, these
problems were studied mainly by means of a mesoscopic
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theory, which assumes that the free energy is a functional
of some order parameter field defined at each point of
the system, that is, both in the interfacial regions and
in the bulk [14, 15]. Later, Indekeu [16, 13] developed
a macroscopic approach, the so-called interface displace-
ment model, which is equivalent to de Gennes’ approach
[3]. In contrast to earlier work, the only quantity of
interest in this model is the separation, /, of a two fluid-
phase interface from a solid substrate, as a function of
the distance from the three-phase contact line. The excess
free energy due to the presence of the contact line is
postulated to be a functional of /, and its minimum
corresponds to the equilibrium line tension. A formal
derivation of an effective interface Hamiltonian for a
pinned interface has been proposed by several authors
(for a recent version see, e.g., Rejmer and Napiorkowski
[17]). To the best of our knowledge, an approach
analogous to the interface displacement model has not
yet been formulated for liquid crystal systems. We note,
however, a paper by Sullivan and Lipowsky [18], who
considered an effective potential for a pinned nematic—
isotropic interface to study a nematic wetting layer.
A similar approach was also applied by Sluckin and
Poniewierski [19] to study a wetting Fréedericksz
transition.

In this paper, we consider a nematic liquid crystal in
contact with a solid substrate, and for the nematic—
isotropic coexistence. It is assumed that partial wetting
of the substrate by the nematic phase occurs. We are
interested in the effect of long range elastic forces and
the anisotropy on: (1) the local tilt angle of the nematic—
isotropic interface, (2) the shape of the nematic—isotropic
interface, and (3) the line tension. In §2 we study the
first two points, whereas the third point is discussed in
§ 3, where we apply a macroscopic approach.

First, we study the system by means of the Landau—
de Gennes theory (mesoscopic approach) [1, 6,20]. We
follow the method of Kerins and Boiteux [211, who
studied an inhomogeneous c-component fluid by means
of the van der Waals theory. They derived an exact
formula for the equilibrium line tension in the case of a
three-phase coexistence, by applying Noether’s theorem.
They also used Noether’s theorem to present an elegant
derivation of the Neumann-triangle conditions for the
balance of forces at the contact line. Here, we follow
this route and derive the condition for the balance of
forces at the nematic—isotropic—substrate contact line,
which can be considered as a generalized Young equation.
It provides a relation between the local tilt angle of
the nematic—isotropic interface and the distance from the
contact line. When the distance from the contact line
tends to infinity, the local tilt angle approaches the con-
tact angle, and the original Young equation is recovered.

However, the presence of distortions in the nematic
director field influences the condition for the local tilt
angle as well as the shape of the nematic—isotropic
interface.

In very recent work, Rey [22,23] has derived the
Neumann and Young equations for nematic contact
lines. The first equation corresponds to a three fluid-
phase coexistence, when one of the phases is nematic,
whereas the second corresponds to nematic—isotropic
coexistence in the presence of a solid substrate. The
force balance equations are expressed in terms of the
surface stress tensor. It is argued that this is a 2x 3
tensor, given by the sum of the tension and the bending
contributions. The bending stresses result in forces
normal to the interface. Using a different approach, we
derive the force balance equation, which also contains
a contribution from the force normal to the nematic—
isotropic interface, in agreement with Rey’s result.
However, our generalized Young equation contains a
contribution from the bulk elastic forces too, but this con-
tribution does not appear in the force balance equation
derived by Rey. We argue that the bulk contribution
is of the same order as the interfacial contribution due
to the bending stress, and therefore it should not be
neglected.

The paper is organized as follows. In §2 we first recall
the Landau—de Gennes theory and define the free energy
functional. Then, we introduce the stress tensor and
derive the force balance equation by the application of
Noether’s theorem. In § 2.3 we derive asymptotic formulae
for the local tilt angle and for the position of the
nematic—isotropic interface as functions of the distance
from the contact line. In § 2.4 we define the line tension
and recall the Kerins—Boiteux formula for the line
tension derived in the framework of the van der Waals
theory [21]. In §3 we postulate a simple version of the
effective nematic—isotropic interface Hamiltonian, in the
spirit of the interface displacement model. We show that
this macroscopic approach is consistent with the results
derived in the framework of the Landau-de Gennes
theory. We also calculate the line tension. Finally, §4 is
devoted to the discussion. Mathematical details are
presented in Appendices I and II.

2. The Young equation

Let us consider a macroscopic portion of the nematic
phase in coexistence with the isotropic phase, and in
contact with a solid substrate; that is, we assume partial
wetting of the substrate by the nematic phase. We choose
the z axis of the coordinate system normal to the sub-
strate. When the nematic drop is large (its size tends to
infinity) the nematic—isotropic—substrate contact line
can be considered as a straight line. Then the system
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is translationally invariant in the direction parallel to
the contact line, which we choose to be the y axis. The
distance from the contact line is measured along the
x axis, and the limit x »> — oo corresponds to a single
isotropic—substrate (IS) interface, whereas the limit
x —> oo corresponds to two infinitely remote interfaces:
the nematic—substrate (NS) interface and the nematic—
isotropic (NI) interface. Finally, the limit z » o corre-
sponds to the bulk isotropic phase. Thus, we consider
the geometry of a liquid wedge, rather than a drop,
which is shown in figure 1.

The contact angle, o, is related to the three surface
tensions: oy, ng, and oy by the Young equation

O1s = Ong T Oy COS 0. (1)

In the case of partial wetting by the nematic phase
0 < o, < m/2. The surface tensions in equation (1) corre-
spond to flat interfaces considered separately, in
the absence of external fields. In general, oyg and oy, are
functions of the nematic director i defined at the Gibbs
dividing surface [2, 24, 251, which separates the interfacial
region from the bulk. We do not show this dependence
explicitly, however. The values of gyg and oy, that appear
in equation (1) correspond to the anchoring directions
at the NS interface and the NI interface, respectively.
We recall that the anchoring direction induced by an
interface between the nematic phase and another phase
minimizes the surface tension of that interface [ 1, 2]. In
the vicinity of the contact line, the local angle at which
the NI interface is tilted with respect to the x axis differs
from «,. This local tilt angle, denoted «, is a function of
the distance from the contact line, and it approaches o,
when x — o . In general, the orientations of fi at the
NS and at the NI interfaces can be different, even if
both interfaces favour the same type of anchoring. This
means that there is some elastic energy associated with
distortions of i, which decreases in a manner inversely
proportional to the distance of the NI interface from the
substrate. Because of this slow decay of the elastic
energy, we expect it to affect the condition for the local

Figure 1. Schematic picture of the liquid wedge geometry
considered in this paper. I, N, and S denote the isotropic
phase, the nematic phase, and the substrate, respectively,
and o, denotes the contact angle. /; is the thickness of a
nematic-like thin film adsorbed at the isotropic-substrate
interface.

tilt angle. Our aim is now to derive a generalized Young
equation, which can be considered as a condition for «
at a finite distance from the contact line.

2.1. The Landau—de Gennes model

To describe the system on a mesoscopic scale we use
the Landau—de Gennes theory of non-uniform nematic
liquid crystals. This means that we neglect the density
changes, and assume that the only relevant variable is
the nematic order parameter Q, a second rank, trace-
less and symmetric tensor [1]. In general, Q has five
independent components, which can be chosen to be
g=0... p=12(Q.i= 0y). Oy Q.. and Q,.. The
number of independent components is reduced if there
are some symmetries in the system. For instance, in the
case of mirror symmetry y— —y, Q,, =@, =0, and
only three independent components remain.

The free energy density, f, has two contributions: the
Landau free energy of a uniform system, f;, which must
describe the nematic—isotropic coexistence, and the con-
tribution due to spatial non-uniformities, f;, which has
a square-gradient form. Thus, we have

f=hr+ /s (2a)
fo=AtrQ*— Btr Q3+ C(tr Q*)? (2b)

1
Jo= E(Llainjainj + L26jQijaink + L3ainjanik)

(2¢)

where the indices run over x,y,z, 8, = 8/dr,, and the
summation convention is assumed. 4 is proportional
to the temperature difference T — T*, where T* denotes
the limit of stability of the isotropic phase, and B and
C, together with the elastic constants L,, L, and L,
are temperature independent material constants. The
last two invariants in equation (2¢) differ only by a
divergence term, which means that L, and L; enter the
Euler-Lagrange equations as the sum L, + L;. In the
bulk nematic phase, Q = Q,(3/2 in — 1/2 1), where Q, is
the bulk value of the main nematic order parameter Q,
and I denotes the unit tensor. When substituted in
equation (2c), this uniaxial approximation for Q leads
to the Frank elastic free energy with the elastic constants:
K,=K3=(3/20,2(2L,+ L, + Ly) and K,=2(3/2 0, L.

The orientation of ii at the NI interface depends on the
sign of L, + Ly. When L, + L;> 0 the parallel anchor-
ing is stable, whereas L, + L;< 0 favours homeotropic
anchoring. These are the only stable configurations in
the Landau-de Gennes theory [26]. Note that in the
latter case K,> K, = K;.

The interaction of the liquid crystal with the solid
substrate is mimicked by a surface free energy density
£.(Q,), where Q,=Q(x,z=0) [6,20]. The simplest
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choice for f, is f,= — h,(Qy),,, where h; denotes the
surface field. When A, >0 the NS interface favours
homeotropic anchoring, whereas /; < 0 corresponds to
planar anchoring. Conical anchoring can be realized
too, provided that f, also contains quadratic terms in
Q, [6]. However, for our present purpose the exact
form of f; is not required.

The free energy functional per unit length of the
contact line of length ¥ is given by

Fy[Q17 =J dxdz[ /(Q, VQ)+ d(2) £(Q)] (3)
B2

where ./ is a large but finite domain in the xz plane, V'
is the volume occupied by the system, and J(z) is the
Dirac delta function. The shape of .# will be specified
later. Formally, we can minimize F,[Q] as if all nine
components of Q were independent. The constraints:
trQ=0 and Q;;= Q;; are taken into account by the
Lagrange multipliers 4;; = 4,0;; — &, A, Where J;; is the
Kronecker delta and ¢, is the fully antisymmetric tensor
[27]. This leads to the Euler-Lagrange equations

of  of _

- ij (4)
“00,0;; 00,
with the boundary condition at z = 0:
0 0
L2y, (5)
aazQij aQij

where A§;= 30, — &/ are the Lagrange multipliers
for Q,. We assume that Q is fixed on the remaining
boundaries of ./ .

2.2. Stress tensor and the force balance equation
We assume that the substrate is homogeneous.
Therefore, the system must be invariant with respect
to translations of the contact line in the x direction.
According to Noether’s theorem [21, 28] (see Appendix I)
the two-dimensional field (H,, H,), where

of
H. =f- 0,.0;; 6
x f aainj le} ( a)
of
H=-——5.0. 6b
z aazQij le} ( )
has a vanishing divergence,
0. H . +06.H,=0 (7)

provided that Q satisfies the Euler—Lagrange equations.
For our purpose, it is convenient to consider H, and H,
as components of a second rank tensor, defined as
follows

af

0= fou— W@Qir (8)
k<ij

In general, X° is not symmetric. Let us consider a small
deformation: r'=r+ u(r), and assume that the order
parameter does not change, i.e. Q'(r') = Q(r). Keeping
only linear terms in u we find

AF,[Q]=F[Q]- F,[Q]= I d*r 2%, (1)9,4,(r)

9)

which shows that X° is the stress tensor. It is easy to
recognize X° as a generalization of the Ericksen stress
tensor [ 1] to the case where both the director and the
order parameters can vary in space. The latter is defined
as follows: %, = 0, — pd,,, where o$,= — [8/f1/8(6,7;)10,7;
is the distortion stress tensor, f; is the Frank distortion
free energy, and p= — f; + const is the pressure (here
we prefer to use the symbol X¢ for the Ericksen stress
tensor to avoid confusion with the surface tension). Far
from the interfacial regions, in a distorted bulk nematic
phase, X¢ reduces to the usual Ericksen stress tensor. We
note that a constant term in the definition of p, playing
the role of a Lagrange multiplier [1], does not appear
in our expression for X° since we do not fix the volume
of the nematic drop. This is justified as long as we
consider the vicinity of the contact line, where we may
ignore gravitational forces, as well as the macroscopic
pressure difference [3].

Comparing equation (6) with (8) we find that H,=2¢,
and H,= 2%, hence, equation (7) can be expressed in
the usual form of the hydrostatic equilibrium condition
in the x direction:

0, 2%+ 0,28, =0. (10)

We note that 6,2, + 6, 2%, = 0 also holds if Q satisfies
the Euler-Lagrange equations, although the trans-
lational symmetry in the z direction is broken by the
presence of the substrate. In this case, however, it is not
the full hydrostatic equilibrium condition in the z
direction, as it does not take into account the liquid
crystal-substrate interaction potential. In the Landau—
de Gennes theory, this potential is singular since it
contains the Dirac delta function J(z); see equation (3).

It results from the definition of X¢ that the nematic—
isotropic surface tension for a single NI interface, tilted
with respect to the x axis, is related to the component
2% = f as follows

on = J 2 .(z)dZ’ (11)
where the z' axis is normal to the NI interface, and the
limits of integration are in the bulk phases.

To obtain a force balance equation corresponding
to the Young equation, we follow the Kerins—Boiteux
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method; that is, we integrate equation (10) over .# and
transform the integral, by virtue of Gauss’ theorem, to
the contour integral over the boundary of .# [21]. This
gives

j; k X &d/=0 (12)
0.4

where k is the outward local normal to o.4.
Equation (12) expresses the balance of forces acting on
~/ 1in the x direction. The force ¥ acting on a surface
element of normal vector Kk is given by ¥ = k ¢ It can
be expressed as the sum of the component along k and
the component along N, where N is tangent to o.7.
Thus, we have

P, =35k )+ T (N %) (13)

where 25, =k Z°¢ k and X%, =k ¢ N.

In principle, the contour 6./ can be arbitrary. However,
in order to obtain meaningful physical quantities from
the integral, we have to make some assumptions con-
cerning the form of Q on 6.7 . Therefore, we choose the
contour locally normal to the IS, NS and NI inter-
faces, which is shown in figure 2. We assume that R is
sufficiently large that we have well defined bulk phases
between the interfaces. This means that in the interfacial
regions Q can be well approximated by the solution of
the Euler—Lagrange equations for a single IS, NS, or NI
interface. Since the director field is usually distorted in
the bulk nematic phase, we also have to take into
account the elastic free energy of this distortion.

First, we integrate along the z = 0 boundary (path II
in figure 2) using boundary conditions (5). Since the
integration is anti-clockwise, we have

R, R of.

I,= (-2, )dx= = 0.0,;:dx
° J—R -R aQij !

= L[Q(R, 0)]= £[Q(= R, 0)]. (14)

: s I .-path TV

T L.

path T \ - “(R,Ir)
B pat,h I \ o e N E‘—pvath 11
-R S X RR,

Figure 2. A fragment of the domain .# considered in the text.
The boundaries of .# are shown as paths I-IV. The
remaining boundary closing the contour 6.7/ in the bulk
isotropic phase is not shown. The point (R, /) is on the
NI interface, and ay denotes the local tilt angle. The axis
z' is normal to the NI interface at x = R.

Next, we perform the integral along the x = — R boundary
(path I), that is

I p= f (- 55)dz= —f fd= (15)

0 0

where z_ . is in the bulk isotropic phase, and we have
assumed that the dependence of Q on x can be neglected.
Integration along x= R, (path III) is similar to that
along x = — R; it gives

Ig, = JZNS (2$,)dz= JZNS fdz (16)
0

0

where the zyg denote the position of the Gibbs dividing
surface for the NS interface. In other words, we assume
that in the interfacial region 0 < z < zg the variations
of Q with x can be neglected, and the surface tension is
a function of i at zg. Above zyg there is a non-uniform
bulk nematic phase described by the director field. The
sum of integrals (14—16) gives

I g+ 1o+ Ig, = ong— 0. (17)

To calculate the contribution from the NI inter-
face, we express the tensor X° in the coordinate system
x'y'z" rotated in the xz plane by the angle oy = a(R),
(see f}gure 2). According to equation (13) k is tangent

and N is normal to the NI interface, and we have
Y.=cosapg XS, —sinag XS, (18)

where & =k and 2 = N. To express ¢ in the x'y'z’
frame, we simply replace, in definition (8), the derivatives
with respect to x and z by the derivatives with respect
to x" and z'. We assume that the derivatives parallel to
the NI interface can be neglected in the interfacial
region; thus, 6,,Q~ 0, 2%~ f and 2%, ~ 0. In general,
2%, # 2%, but we show in Appendix II that the anti-
symmetric part of X° is related to the derivative 8//80.
The latter expresses an infinitesimal change of f when
Q is rotated by the angle df in the xz plane, while the
coordinates remain unchanged. This relation is given by

S D= (19)
hence, 2%, ~af/60 in the interfacial region. If the
system has the mirror symmetry y+— —y, and this is
the case considered below, then 0 defines the director
orientation in the xz plane: fi = (sin 0, 0, cos 6). In the
Landau—de Gennes theory, f does not depend on 6 in
the bulk nematic phase because fg= 1/2 K(V0)?, where
K=K, =K;. This means that 8//30 # 0 only in the
interfacial region. Using the Euler—Lagrange equation
for 6 we express af/60 as follows

of _ of of _ of
a0 ¥ 00,0 T 00,.0

X

(20)
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where again we have neglected the derivative parallel to
the NI interface. We can now perform the integration of
Y. over the interfacial region (path IV in figure 2) by
combining equations (18—20). This gives

zl’TI'dX zl’TI'dX . 6
I v dZ,:J (cos og f — sin ocR—g) dz’
21 zN1 9

+ si of (21)
= COS g0 sin oz [ ——

RONI R 00,0 A

where z;,,, is in the bulk isotropic phase and zy; denotes
the position of the Gibbs dividing surface for the NI
interface. The last term in equation (21) is the projection
of the force normal to the NI interface onto the x axis.
Like the surface tension, it comes from the integration

over the interfacial region. For a single, flat NI interface

of _ 00 (22)
00.0 ), a0

where 6y, defines the director orientation with respect
to 2’ at zy;.

Finally, we calculate the contribution from the elastic
forces. The calculation is performed in the xyz frame. In
the bulk nematic phase, variations of the order para-
meters can be neglected, and the X°¢ have the following
components: X = 1/2 K[(6,0)> — (6,0)*], 2, =X =
- K(0,0)(0,0), and X, = — X . The elastic contribution
to the total force is given by

b b
Yl = J (Eak+ 25k, )dl= J (= 2%, dx + 2%, dz)

(23)

where a and b are points on the NS and the NI dividing
surfaces, respectively. We have also used the fact that
the local tangent direction to o.# is given by (- k,, k).
The sum of all contributions, given by equations (17),
(21) and (23), leads to the following force balance
equation in the limit of large R

Ons — Ops + COS tpany + sin og K(Ng VO)y + =0
(24)

where N, is normal to the NI interface at x= R,
and K(Np V0)y, = [of/a..0)],,. Equation (24) can
be considered as a generalization of the Young equation
to the case of large but finite R.

2.3. Asymptotic analysis
We expect that the last two terms in equation (24)
decay like Iz !, where I, = I(R) is the distance between
the NS and the NI interfaces measured along the z
direction. Since for large R, /[ ~ R tan o, we recover the
Young equation, (1), for the contact angle in the limit
R — o . At a finite R, o deviates from «,. Assuming

og = 0, + 0oy, we find from equation (24) that because
of the elastic force contribution to the balance of forces
dug~ R™1, unless the last two terms in (24) exactly
cancel each other. The local tilt angle is related to /(R) by
tan o = d//dR, hence, /(R)— R tan o, ~ In R, for R —> o .
This means that the elastic forces cause a logarithmic
deviation of /(R) from the asymptotic linear behaviour
characteristic for simple fluids.

To make quantitative predictions we have to assume
the asymptotic form of 0(x, z) far from the three-phase
contact line. In the bulk nematic phase, it must satisfy
the Euler—Lagrange equation

V20 = 0. (25)

Here, we assume that the asymptotic solution of
equation (25) does not depend on the distance from
the contact line, but only on the angular variable
¢ = arctan(z/x), i.e.

0

-0
O(x,z)= Oxs + % arctan % (26)

where 0y = 05 — o, and Oyg are the anchoring directions
of the NI and the NS interfaces, respectively, expressed
in the xyz frame. A schematic picture of the director
field is shown in figure 3. We consider the following
three cases of the anchoring directions at the NS and the
NI interfaces: (a) homeotropic—homeotropic, (b) homeo-
tropic—planar, and (c) planar-homeotropic, which are
compatible with fi(r) in the xz plane. It is straightforward
to show that for 0(x,z) given by equation (26),
X =1/2 Kno (6,0) and X = — 1/2 Kyno.(8,0), where
= (On;— Ons)/%.. The substitution of X, and X%, to
(23) gives

Y= — %Kn[a)ﬁ(b)— 0,0)]. (27)
(a)
I —
- k‘\ \N \‘\
~ ‘
(b)

Figure 3. Schematic picture of the asymptotic director field.
Anchoring at the NS and the NI interfaces is, respectively,
(@) homeotropic and homeotropic (b) homeotropic and
planar, (c) planar and homeotropic
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If we ignore the thickness of the interfacial regions ¢!
assumes the following simple form

1 sin
Yol = EKnZ—‘pR (28)
Pr

where tan ¢, = I/R and p% = R*+ 3. We also find that

R cos(og —
K(N, V@)NI=K11(R—¢R). (29)
PR
Finally, equation (24) can be expressed as follows
1 sin
Ons — Ois + COS ooy + _anﬁ
2 PR
sin og
+ Kn cos(ag— ¢r)=0 (30)
PR

where ¢ = o, + d¢ for large R. From equations (1) and
(30) we find the leading term in the asymptotic expansion

of dog:
5 K [0+ 12— 1] K cos o[ /AO,\? .
og~ -1l —=—7 -
K 20nPr 1 2o R %e
(31)
hence,
K In(R/R AG,\?
Ix~ R tan o, + L/O)I:(—a) - 1:|+ZO
20 COS O
(32)

where /, is the integration constant, and R, is a cut-off
length. By A6, = 0, — Oxs We have denoted the difference
of anchoring directions measured with respect to the
interface normals.

In the case of homeotropic anchoring at both the NS
and the NI interfaces, 0y; = Oys =0, and dap < 0. For
R> R,, I deviates from linear behaviour in such a way
that the NI interface is shifted towards the substrate. To
make a rough estimate of this effect, we have used the
data for 5CB [29] (in fact the anchoring at the NI
interface is tilted for 5CB): K = 2.1 x 10~ 7 ergem ™! and
on = 1.5 % 10~ 2 ergem ™ 2, which gives K/(20y) = 700 A.
For ;= + n/2 (planar anchoring) and Oyg = 0 (homeo-
tropic anchoring), we have oy > 0, and the logarithmic
correction to /g is also positive when R > R,. We obtain
the same result also for 0;=0 and Oyg= = m/2. The
case of planar anchoring at both interfaces is different,
as then the orientation of i parallel to the contact line
is energetically favourable.

2.4. Line tension
The line tension, 7, is defined as the excess free energy
over that in the bulk phases and the interfaces, per unit
length of the contact line [12]. Thus, 7 is obtained from
equation (3) by subtracting the surface contributions

due to the three interfaces and taking the limit of infinite
domain (the thermodynamic limit). We postpone the
calculation of 7 to the next section, where we develop a
macroscopic approach. Here, we recall only the results
for a c-component fluid system.

Kerins and Boiteux [21] considered a three-phase fluid
system with a line of contact. Applying the van der Waals
theory to the c-component system, and using Noether’s
theorem, they derived for = formula analogous to that for
the surface tension. In our notation, the Kerins—Boiteux
free energy density is given by /' = f5(Vp) + f.(p), where
p=(py...,p;) 1s a c-component density (or order
parameter),

1 c
Jo= E Z Mij(vpi ij) (33)

i,j=1

and V denotes a two-dimensional gradient. The function
f.(p) is positive, and vanishes in the bulk regions of
coexisting fluid phases. The equilibrium line tension is
given by the Kerins—Boiteux formula [21]

T= I dXJ dz[f6(Vp) = fle)]  (34)

where p satisfies the Euler—Lagrange equations. The
integrand tends to zero both in the bulk regions and in
the interfacial regions far from the contact line. Thus,
it is non-zero only in the vicinity of the contact line.
Perkovié¢ et al. [30] showed that formula (34), with
J*% dz replaced by JOHO dz, applies also in the case
of a two fluid phase—solid substrate contact line, and
the proof was given for a one-component p. Since the
Landau—de Gennes theory has a similar formal structure
to the van der Waals theory considered in [30] it is
natural to expect that an analogous formula to (34)
holds also in the case of the nematic—isotropic—substrate
contact line; however, we do not present a formal
proof here.

A natural question arises concerning the convergence
of 7 in the thermodynamic limit. For a comprehensive
review of the behaviour of 7 near a wetting transition in
simple fluid systems see [13]. Whether t tends to a
finite value or diverges when the thermodynamic limit
is taken depends, in general, on an effective interaction
potential between the substrate and the two fluid-phase
interface. In liquid crystal systems, the problem is more
complicated because of long range elastic forces. In
principle, © can be studied in the framework of the
Landau—-de Gennes theory. However, a macroscopic
approach seems to be the best way of studying the
problem of convergence of 7 in the thermodynamic limit,
in which we are mainly interested here. On the other hand,
if we were interested in the contribution to 7 coming
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from the core region, where the description in terms of
Q is essential, we should use the Landau—de Gennes or
a microscopic theory.

3. The interface Hamiltonian

It is instructive to rederive the results of the previous
Section using the interface Hamiltonian approach. We
defer rigorous derivation of such a Hamiltonian for a
pinned NI interface to a future work. Here, we simply
postulate a form of the Hamiltonian capable of repro-
ducing the shape of the NI interface in the asymptotic
limit of large separations from the substrate. In the case
of simple fluids, the interface Hamiltonian is a functional
of only one variable, i.e. the separation of the interface
between two fluid phases from the substrate. In the
presence of orientational degrees of freedom, orientations
of the director at the NS and the NI interfaces should
also be included. Thus, if twist deformation is not present
we deal with three field variables: the distance /(x)
between the NI interface and the substrate, and the two
angles: 0,(x) and 0,(x), corresponding to the director
orientations at z= 0 and z = [(x), respectively.

First, we calculate the contribution to the free energy
from the elastic forces. Let us consider a bulk nematic
phase contained between two flat surfaces: z=0 and
z= x tan «. We assume that ii is in the xz plane, and its
orientation is given by 6(x,z) satisfying the Euler—
Lagrange equation V20= 0, with the boundary con-
ditions: 0(x, 0) = 0, and O(x, x tan o) = 0,. The solution
is given by

91_ 00
0(x,z)=0,+ arctan (z/x). (35)
o

The contribution to the elastic free energy from a portion
of the nematic phase contained between x — 1/2 dx and
x+ 1/2dx is dF,=1/2 K(0,— 0,)* tan adx/(2z), where
z= x tan o. To obtain the elastic free energy density we
apply this formula locally replacing z and tan a by /(x)
and /= dl/dx, respectively, which gives

_l (01_00)2 l
fa=3K=— ( ) (36)

arctan /

In the flat interface limit (/= 0), we recover the usual
expression for the elastic free energy in the one elastic-
constant approximation.

We consider the excess free energy due to the presence
of the three-phase contact line, i.e. the line tension
functional

[/, 0o, 0,1 = Jw {oa[(1+ 12)1/2 -1]

- ®©

+ V(D) + fy+ fui+clx)}dx (37)

where

fi= %WNS(QO — Ons)? + %WNI(QI + arctan [ — 04;)?
is the sum of anchoring energies at the NS and the
NI interfaces, V(/) denotes the excess free energy of a
uniform nematic film of thickness /, and a piecewise con-
stant function ¢(x) must be included to ensure that the
integrand vanishes for |x| - o . The qualitative behaviour
of V() is shown in figure 4 [13]. It has a minimum at
l,=1lim,_, _I(x), V(l;) =0, which corresponds to a thin,
nematic-like film at the IS interface. This is the global
minimum in the case of partial wetting. There is also a
local minimum at /= corresponding to a metastable
wetting layer, and V(© )= ong+ 0n— 0= — S, where
S is the spreading coefficient [3]. We also assume that
V(I)— V() goes to zero faster than /~!. In the most
general form, V' could also be a function of the orien-
tational variables 0, and 0,. Since we are interested only
in the asymptotic form of /(x), for x >, we do not
consider such a dependence, however. In the functional
7, we have also neglected the derivatives 90 and 91, ie. the
contributions to the free energy due to inhomogeneities
of the boundary conditions, which could be included in
a more refined version.

Let us assume first homeotropic anchoring at both
interfaces. We minimize 7 with respect to 6, and 0, to
obtain

bas!

0= - ———— 38
0 [+ 2bifarctan | (38a)

0= larctan [ + bygl (385)

'~ [+ 2bifarctan
where b= 1/2(bys + bni)» and byg = K/wyg, bag = Klwyny
denote the extrapolation lengths for the NS and the NI
interfaces, respectively. Substituting equation (38) into

(37) we express 7 in terms of the field /(x) alone as

Figure 4. Qualitative behaviour of the effective interaction
potential V([). S is the spreading coefficient. The global
minimum of V(/) at /; =lim, , _ ., /(x) corresponds to a thin,
nematic-like film, whereas the local minimum at /= ®
corresponds to a metastable wetting layer.
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follows

t]= Jm {GNI[(I + P2 — 11+ V()

-

1 [arctan |

K—
) [+ 2bifarctan [ ¢(x)} dx (39)

hence ¢(x) =0, for x <0, and ¢(x) = gy;(cos o, — 1/cos a,),
for x> 0. Since we are interested in the asymptotic
analysis for large /, we approximate the third term in
(39) by (1/2 K/I)l arctan /. The minimum condition for
#[7] leads to the Euler-Lagrange equation, which has
the following first integral

LI ML
ol e | PO K T

(40)

We can also express the above condition in terms of the
local tilt angle, « = arctan /, as follows
1 sin?«

Vo )= 5 K——=0

N COS 0+ ays — 05 + V() —

(41)

Now, we consider the asymptotic limit of x > and
express the local tilt angle as o = o+ oo, where du is
small. The first term in the asymptotic expansion of /(x)
is x tan o, which substituted into equation (41) gives

K cos o,
S — ——. (42)
20X
Thus, we have recovered equation (31).

To study the line tension, we return to the general
case of different anchoring directions at the NI and
the NS interfaces. However, to simplify calculations we
assume that the contact angle is small and / is also
small. Then, the functional #[/] assumes the following
simple form

[ S ]
T[] = —on P+ T + V() + c(x) |dx

(43)

where ¢(x)~ — 2V (0 ), for x>0, and V(0 )= 1/2 oy o2.
It is convenient to rewrite Z[/] as follows

i[l]= J I:—a(l

where o(l)= oy + K/(I+ 2b), and V()= V(I)+ 1/2 K(AB,)*/
(/+2b). The Euler-Lagrange equation has the first

+ | AGE: ¢(x):|

(44)

integral

%au)ﬂ— V(=0 (45)

_[2noe
= [ o) :| . (46)

If V() is of short range, we can solve equation (46) in
the region of large [, where V(I)~ V(o ). The solution is
given in an implicit form:

[+ a)(+ az)]l/2
+ (a;— a)) In[(I+ a)Y? + (I + a,)"?]
= o,X + const (47)

where a, = 2b + K/oy and a, = 2b + (A0,/a,)* K/oy. In
the asymptotic limit of x - © , equation (47) is consistent
with asymptotic formula (32) applied to small contact
angles.

To obtain the equilibrium line tension we substitute
equation (46) into (44), which gives

= S ey - k2% g
i ! 1+ 2b

+J {[20(1)/V1(1)]”2[V1(1)— V)]

hence,

KMa d/ 48
[+ 2b (48)

where [, = [(0). Note that (26/V)'*> - 2/a, when [ - .
Thus, for large / and A6, # 0, the integrand in the second
integral decays like [(A0,/a,)— 11KA0,/(I+ 2b). When
A0, = 0 it decays like (2/a,) V(1) — V(0 )], which is faster
than the /! decay. This means that T remains finite in
the thermodynamic limit in the case of homeotropic
anchoring at both interfaces. However, when the anchor-
ing directions at the NS and the NI interfaces are different,
7 diverges logarithmically with the size of the system.

4. Discussion

We have presented a preliminary study of the nematic—
isotropic—substrate contact line region in the case of
partial wetting by the nematic phase. Using the Landau—
de Gennes theory and applying Noether’s theorem, we
have derived the force balance equation at the con-
tact line. The long-range elastic forces due to different
orientations of the nematic director at the NS and
the NI interfaces cause a logarithmic deviation of the
NI interface position from the usual asymptotic form
/(x)~ const + x tan o,. The characteristic length scale
of this deviation, K/(20y;), can be as large as a few
hundred A. This conclusion is based on a plausible
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assumption concerning the nematic director field in the
bulk nematic phase, far from the three-phase contact line.

We have also proposed a simple macroscopic model,
which is similar in spirit to the interface displacement
model. However, it takes into account also the long
range elastic forces, which do not appear in simple fluid
systems. In the framework of the macroscopic model,
we have shown that the behaviour of the line tension
in the thermodynamic limit depends on the type of
anchoring at the NS and the NI interfaces. We note that
if the asymptotic behaviour of / was simply /~ xa, (for
small contact angles), i.e. without the logarithmic term,
then © would diverge logarithmically with the system
size, also in the case of homeotropic anchoring at both
interfaces. This is a simple conclusion from equation (43).
However, when the asymptotic form /~ xo,— (K/20y) In x,
for AG,=0, is substituted into (43) then the two terms
decaying like x~! in the integrand cancel each other out,
and the integral is finite. In other words, an increase of
the bulk free energy due to the distortion of the director
field is cancelled out by a decrease of area of the NI
interface, compared with the case of linear profile. No
such cancellation occurs when A6, # 0. In that case, the
interfacial area increases compared with linear /(x), and
this increase, together with the free energy of distortion,
gives rise to the divergence of t in the thermodynamic
limit. Although we have obtained these results only for
small contact angles, we believe that they are valid in
general.

In two recent papers, Rey [22, 23] derived the force
balance equations for nematic contact lines, which are
generalizations of the Neumann and Young equations.
The first concerns the situation when the nematic phase
coexists with two isotropic fluid phases, which has not
been considered in our study. Therefore, we concentrate
on the comparison of Rey’s version of the generalized
Young equation with our version. The starting point in
[23] is also the Landau—de Gennes theory. However,
the contribution to the free energy from the nematic—
isotropic interface appears explicitly (equation (3 a) in
[23]) as a surface integral over the interfacial free energy
density, yN*, treated as a function of the interfacial order
parameter Q and the surface normal. The anisotropic
(Q dependent) part of yN* is assumed to have the same
quadratic form as f,(Q) for the nematic phase in contact
with an isotropic solid substrate [6,20]. The force
balance equation at the contact line is expressed in
terms of the surface stress tensor t. It is argued that in
nematic liquid crystals t is generally a 2 X 3 tensor. The
components of t parallel to the interface are the usual
interfacial tensions. The remaining two components
correspond to bending stresses, and they contribute to
the balance of forces only if the interface is tilted with
respect to the substrate. We note that the generalized

Young equation derived by Rey (equation (27) in [23])
resembles our equation (24) if we put * = 0. Indeed,
substituting (22) into (24) we obtain

. oo
Ons — Ops + COS 0g Oy + Sin ocRaTl,\H=0 (49)
NI

where 80y, /00y, is equal to the bending coefficient BBN
for the NI interface introduced by Rey. Equation (49)
is to be compared with equation (27) in [23] or
equation (11) in [22]. Since in these two equations
presented by Rey the bending term appears with different
signs we note that our equation (49) is consistent with
the latter.

The lack of the bulk elastic term in Rey’s force balance
equation is not discussed by the author. As our derivation
based on Noether’s theorem shows, in general this term
should not be neglected. It vanishes, however, when the
bulk director field is not distorted. We expect it to occur
when the distance / between the NI and the NS interfaces
is smaller than b, ,,, the larger of the two extrapolation
lengths [1]. Then, the force balance equation reduces
to that derived by Rey. In our considerations, we have
implicitly assumed an asymptotic limit of />4, ,,. In
principle, it is possible to imagine a sufficiently large
nematic drop to satisfy this asymptotic condition. In
practice, a measurement of a well defined contact angle
is possible when the distance from the contact line is
large compared with the size of the core region, but
small compared with the droplet size [3]. Thus, in the
case of weak anchoring or close to complete wetting by
the nematic phase, it may be difficult to observe the
asymptotic region /> b in which the director field is
distorted.

Finally, we note that the anchoring energy used in
the interface Hamiltonian considered in §3 could be
replaced by the Rapini-Papoular form [31]. It is more
suitable when deviations of the surface director from the
anchoring direction are large, and this usually occurs
when /<b,, .. To study the vicinity of the contact
line in more detail, in particular, a possible cross-over
between the regions of distorted and uniform director
fields, it might be necessary to consider the derivatives
0, and 0, in the interface Hamiltonian. At the moment,
we also do not know the precise form of V(/). Therefore,
it would be desirable to derive an interface Hamiltonian
for the nematic phase in coexistence with the iso-
tropic phase (or vapour) from the Landau—-de Gennes
formalism or a microscopic theory. We defer studies of
this non-trivial problem to future work.
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Appendix I
In this Appendix, we show how Noether’s theorem
works in a special case of one field in a two dimensional
space.
Let us consider the following functional

F [?]= J dxdy f(®, VO, x, y) (A1)

where @ = @(x, y), and ./ is a closed, simply-connected
region in the two dimensional space. The function f is
usually called the Lagrangian. Then, we assume a small
deformation of the variable x, that is, the point (x, y) is
transformed to (x', ") as follows

x'=x+ u(x)
(A2)
y=y

where u(x) is small. The region .# is transformed to
«/'. The field variable does not change, ie. A®=
D'(x',y")— ®d(x,y) = 0. More generally one can consider
a transformation of both the space points and the field
variable. Now, we can calculate the change of the
functional F due to transformation (A2). Keeping only
the terms linear in u we find

AF/ = F,r/'[dy] - F.r/ [2]
=f dx dy[ o po.w)+ —L Ao, )

00, 00,®
du
+ fou+ f— (A3)
dx
where  f. = (0f/0x)pvp, AOP) = 0,D — 0,P =

— (0,9P)(du/dx), and A(5,®) = 0. After some manipulations
we obtain from (A3) the following expression

_ of
AF—J; dxdy{axli ( - . (pa ID):l
af
+ay(_u66y(15 - )

of of of
" ( "aaxtp+ayaay¢ atp) uo (p} (A4)

Now, we assume that @ is a solution of the Euler—
Lagrange equation, so that the last term in the integrand
vanishes, and that u(x) = const. Then, the invariance of
F with respect to translations along x implies that the
divergence term in the integrand must vanish, since the
region ./ 1is arbitrary. It is easy to show by direct
calculation that the divergence term vanishes, provided
that @ satisfies the Euler-Lagrange equation, and f

does not explicitly depend on x. Thus, we have found

that
_of of B
( - 20.0 tD) + ay(— 66y¢ax¢)_ 0. (AS)

In the one dimensional case, the function .# = (5f/6d)d— f,
where & = d®/dx, is the Hamiltonian, and we have
d# /[dx=0 or # = const, which is simply the energy
conservation law.

If f depends neither on x nor y, we have in addition
to (AS)

of f
a(-sane)rali- e

Generalization to the case of n field variables, &P,
(p=1,...,n), satisfying the Euler—Lagrange equations is
straightforward. One simply replaces in equations (A5)
and (A6) the terms (3f/00,®)o;®, where i,j= x,y, by
the terms 2%, (0.f/00,PF)0,dF.

qs) = 0. (A6)

Appendix II
In this Appendix, we derive identity (19). Let us first
define the following two auxiliary second rank tensors:

v,--L ;0 (A7)
i 00,04
and
of
V.,=——20 A8
ij aath le} ( )

Differentiation of f with respect to 6,0;; gives—see
equation (2c¢)

of
aainj
It results from equations (A7-A9) that the tensor U

is symmetric, whereas V is not symmetric. Now, we
consider an infinitesimal rotation in the xz plane

= L15inj + L261Qi15jk + L3anik' (A9)

R =+ (&2 — 2%) (A10)

where ¢ is the infinitesimal rotation angle. Of course, f
must be invariant with respect to arbitrary rotations of
both the coordinates and Q. Applying R, to f we find
the coefficient of ¢ in the expansion of f, which must
vanish, i.e.

U= U )+ Ve = Vo) = (25— 250 =

where the first term vanishes because U is symmetric.
We can also consider the situation when only Q is
rotated in the xz plane, while the coordinates remain
unchanged. An infinitesimal rotation by the angle df

0 (All)
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results in an infinitesimal change of Q
dQ=[%z Q- 2% Q)+X(Q 2)-2Q %)]d0
(A12)
hence

of __of 0.0y _

= U .- U )+ V.=V,
0 g ar U U+ U= V)

(A13)
From equations (A11) and (A13) we find that
of
— =29 - 2. Al4
5= T (AL4)

Identity (A14) can be expressed in any coordinate frame
rotated with respect to the xyz frame about the y axis,
hence identity (19) follows.
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